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APPLICATIONS OF THE LATTICE BOLTZMANN METHOD TO COMPLEX AND

TURBULENT FLOWS

LI-SHI LUO*, DEWEI QIt, AND LIAN-PING WANG*

Abstract. We briefly review the method of the lattice Boltzmann equation (LBE). We show the three-

dimensional LBE simulation results for a non-spherical particle in Couette flow and 16 particles in sedimen-

tation in fluid. We compare the LBE simulation of the three-dimensional homogeneous isotropic turbulence

flow in a periodic cubic box of the size 1283 with the pseudo-spectral simulation, and find that the two

results agree well with each other but the LBE method is more dissipative than the pseudo-spectral method

in small scales, as expected.

Key words, lattice Boltzmann method, turbulent flow, 3D homogeneous isotropic turbulence, spectral

method, non-spherical particulate suspensions

Subject classification. Fluid Mechanics

1. Introduction. More than a decade ago, the lattice-gas automata (LGA) [5, 24, 6] and the lattice

Boltzmann equation (LBE) [17, 12, 2, 22] were proposed as alternatives for computational fluid dynamics

(CFD). Since their inception, the lattice-gas and lattice Boltzmann methods have attracted much interest

in the physics community. However, it was only very recently that the LGA and LBE methods started

to gain the attention from CFD community. The lattice-gas and lattice Boltzmann methods have been

particularly successful in simulations of fluid flow applications involving complicated boundaries or/and

complex fluids, such as turbulent external flow over complicated structures, the Rayleigh-Taylor instability

between two fluids, multi-component fluids through porous media, viscoelastic fluids, free boundaries in flow

systems, particulate suspensions in fluid, chemical reactive flows and combustions, magnetohydrodynamics,

crystallization, and other complex systems (see recent reviews [3, 16] and references therein).

Historically, models of the lattice Boltzmann equation evolved from the lattice-gas automata [5, 24, 6].

Recently, it has been shown that the LBE is a special discretized form of the continuous Boltzmann equation

[8, 9]. For the sake of simplicity without loss of generality, we shall demonstrate an a priori derivation of

the lattice Boltzmann equation from the continuous Boltzmann equation with the single relaxation time

(Bhatnagar-Gross-Krook) approximation [1].

an ordinary differential equation:

Dtf + _ f _ f(o)

The Boltzmann BGK equation can be written in the form of

f(o) = (27r_) D/2 exp
(1.1)

where Dt - Ot + _" V, f - f(w, _, t) is the single particle distribution function, /_ is the relaxation time,

and f(0) is the Boltzmann distribution function in D-dimensions, in which p, u and 0 -- kBT/rn are the

macroscopic density of mass, the velocity, and the normalized temperature, respectively, T, kB and rn are

temperature, the Boltzmann constant, and particle mass. The macroscopic variables are the moments of the
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distributionfunctionf with respect to the molecular velocity _:

p = f f d_ = / f(°) d_ , (1.2a)

pu = f _ f d_ = / _ f(°) d_ , (1.2b)

pO = _ (_ - u) 2 f d_ = (_ _ u)2 f(o) d_. (1.2c)

Equation (1.1) can be formally integrated over a time interval (it:

f(x+_6t,_,t+6t)=e-5_/Xf(x,_,t)+ 1Ae-5_/x foS_et'/xf(°)(x+_t',_,t+t')dt'. (1.3)

Assuming that (it is small enough and f(0) is smooth enough locally, and neglecting the terms of the order

O((i_) or smaller in the Taylor expansion of the right hand side of (1.3), we obtain

f(x + _(it, _, t + (it) - f(x, _, t) = - l[f(x, _, t) - f(0)(x, _, t)], (1.4)

where 7- - A/(it is the dimensionless relaxation time. The equilibrium f(0) can be expanded as a Taylor

series in u up to u 2

f(eq)_ /) --_ 202(27tO)D� 2 exp 1 + + . (1.5)

To obtain the Navier-Stokes equations, the hydrodynamic moments (p, pu, and pO) and their fluxes

must be preserved in finite discretized momentum space {(_la = 1, 2, ..., b}, i.e.,

P ---- Z S_ ---- Z fa(eq) ' (1.6a)
C_ C_

pu = Z (_ f_ = Z (_ f(eq) , (1.6b)

1 1 Z(_o _ __ U) 2 fa(eq) (1.6C)pO = _ Z(_ - u) 2 f_ = _
C_ C_

where f_ -- f_(x, t) -- W_ f(x, _, t) [8, 9]. It turns out that these moments can be evaluated exactly in

discretized momentum space by using Gaussian-type quadrature [8, 9, 23].

We can derive the nine-velocity athermal LBE model on a square lattice in two-dimensions

1
f_(xi + e_(it, t + (it) - f_(xi, t) = -_[f_(xi, t) - f(eq) (xi, t)], (1.7)

where the equilibrium f(eq), the discrete velocity set {e_}, and the weight coefficients {w_} are given by

f(eq) = w_ p { 1 + 3(e_.c_u) + 9(e_.2c4u)2 3U22c2 } , (1.Sa)

{,00,e_ = (4-1,0)c, (0,+1)c, a=1,2,3,4, w_= 1/9, a=1,2,3,4, (1.8b)

(4-1, 4-1) v_c, a = 5, 6, 7, 8, 1/36, a = 5, 6, 7, 8,

and c - (ix/(it. Equation (1.7) involves only local calculations and uniform communications to the nearest

neighbors. Therefore it is easy to implement and natural to massively parallel computers.



The(incompressible)Navier-StokesequationderivedfromtheaboveLBEmodelis:

pcgtu q- pu.Vu = -VP + ppV2u, (1.9)

with the isothermal ideal gas equation of state, the viscosity, and the sound speed given by

(_) 1P=c_p, u= T- c_(_t, cs= _c. (1.10)

It should be noted that the factor -1/2 in the above formula for p accounts for the numerical viscosity due

to the second order derivatives of f_. This correction in p formally makes the LGA and LBE methods second

order accurate. Similarly, we can derive the six-velocity and seven-velocity models on a triangular lattice in

two-dimensions, and the twenty-seven-velocity models on a cubic lattice in three-dimensions [9].

There have been some significant progress made recently to improve the lattice Boltzmann method: (i)

the generalized lattice Boltzmann equation with multiple relaxation times which overcomes some shortcom-

ings of the lattice BGK equation [14]; (ii) use of grid refinement [4] and body-fitted mesh [10, 7] with inter-

polation/extrapolation techniques; (iii) adaptation of unstructured grid by using the finite element method

or the characteristic Galerkin method; (iv) application of implicit scheme for steady state calculation and

multi-grid technique to accelerate convergence (see a recent review [16] for further references).

In what follows we shall demonstrate the applications of the LBE method to simulate the flow of non-

spherical particulate suspensions in fluid and homogeneous isotropic turbulence in a periodic box.

2. LBE Simulation of Flows of Non-Spherical Particulate Suspensions. The flow of particulate

suspensions in fluid is difficult to quantify experimentally and to simulate numerically in some cases. Yet

the flow of particulate suspensions is important to industrial applications such as fluidized beds. There have

been some successful simulations of the flow of spherical suspensions by using conventional CFD methods,

such as the finite element method. However, the simulation of the flow of non-spherical suspensions still

remains as a challenge to the conventional CFD methods. Recently the LBE method has been successfully

applied to simulate the flow of non-spherical suspensions in three-dimensions [19, 20]. The success of the

LBE method to this problem relies on the fact that the LBE method can easily handle the particle-fluid

interfaces [15], and accurately evaluate the force on the particle due to the fluid flow [18].

We first simulate a single non-spherical particle in the Couette flow. The equilibrium states in a non-

spherical particulate suspension in a 3D Couette flow are simulated for a particle Reynolds number up to

320. Particle geometries include prolate and oblate spheroids, cylinders and discs. We show that the inertial

effect at any finite Reynolds number qualitatively changes the rotational motion of the suspension, contrary

to Jeffery's theory at zero Reynolds number [13]. At a non-zero Reynolds number, a non-spherical particle

reaches an equilibrium state in which its longest and shortest axes are aligned perpendicular and parallel

to the vorticity vector of the flow, respectively. This equilibrium state is unique, dynamically stable, fully

determined by the inertial effect, the maximum energy dissipation state. Systems of either fifty cylinders or

fifty discs in Couette flow are also simulated. Multi-particle interactions significantly change the equilibrium

orientation of solid particle. The effect is stronger for cylinders than for discs. The details of this work will

be reported elsewhere [21].

Figure 1 shows a 3D LBE simulation of sixteen cylindrical particles falling under the influence of gravity.

The left figure illustrates the time evolution of the entire system of sixteen particles, while the right figure

demonstrates the formation of inverted T configurations in the sedimentation, which has been observed

experimentally. To the best of our knowledge, this phenomenon was first reproduced numerically by the

LBE direct numerical simulation [20].
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FIG. 1. 3D LBE simulation of particles sedimentation in )fluid. Particle size is D = 12 and L = 24. System size is

Nx × Ny × Nz = 140 × 150 × 35. The averaged single-particle Re _ 16.9. (left) Evolution of 16 particles (from left to right and

top to bottom). (right) Formation of inverted T configurations which are also observed in experiment.

TABLE 3.1

Parameters in lattice Boltzmann and pseudo-spectral simulations: L is the length of box side; N a is the system size; _ is

the viscosity; u _ is the RMS )fluctuation of the initial velocity field; dt is the time step size; T is total integration time, Re_ is

the Taylor microscale Reynolds number; and M is the Mach number.

Method L N 3

Spectral 2u 1283

LBE 128 1283

t_ Ut

0.01189 0.993311

0.009869 0.040471

dt T Re_ M

0.002 2 35.0 0

1 1000 35.0 0.0687

3. LBE Simulation of 3D Homogeneous Isotropic Turbulence. Homogeneous isotropic turbu-

lence in a three-dimensional periodic cubic box remains as a stand problem in the field of direct numerical

simulation of turbulence. Due to the simplicity of the boundary conditions, the pseudo-spectral method can

be easily used to simulate the flow. Because of its accuracy, the pseudo-spectral result is often used as a

benchmark standard. Here the LBE simulation of the flow is compared with the pseudo-spectral simulation.

The parameters of the simulation are given in Table 3.1. The initial condition is a random velocity field
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FIG. 2. LBE vs. Pseudo-spectral DNS of 3D homogeneous isotropic turbulence. System size is 1283. Rex = 35. (a) The

energy spectrum E(k) as a function of time. (b) The decay of the mean kinetic energy K and dissipation rate e. The results

from the LBE simulation are scaled according to the dimensions used in the spectral simulation.

with a Gaussian distribution and a compact energy spectrum

E(k) o( ko exp -k0 "

The boundary conditions are periodic in three dimensions. The Taylor microscale Reynolds number is defined

as

P P

where K(t = O) = (ug/2)v = (3u_Ms/2)v is the volume averaged kinetic energy (of the initial zero-mean

Gaussian velocity field u0 with RMS component uaMs), and A is the transverse Taylor microscopic scale:

A=V/15pu_s/e,

where e is the dissipation rate.

Figure 2 shows the energy spectrum E(k) as function of time, and the time evolution of the mean kinetic

energy K and dissipation rate e. The lattice Boltzmann results (symbols) are compared with the pseudo-

spectral results (lines). The LBE results agree well with the pseudo-spectral results. Obviously the LBE
1 1

method is more dissipative, especially at high wave numbers k > _kmax, where kmax ---- 5N, and N is the

number of mesh nodes in each direction. This is because the LBE method is only second order accurate in

space and time and thus more dissipative than the pseudo-spectral method.

4. Conclusions and Discussion. The above simulations were performed on a Beowulf cluster of

Pentium CPUs. For the simulation of the particulate suspension, the code consists two part: the lattice

Boltzmann method for the fluid and molecular dynamics (MD) for the solid particles [19]. Even though

the MD part of the code is not yet parallelized, the speed of the code still scales well with the number of

CPUs up to 32 CPUs when the system size is 643 and with fifty particles. Presently we can easily simulate

a system of a few hundred particles on our Beowulf system.



Asfor thesimulationofthe3Dhomogeneousisotropicturbulence,theLBEcodewithoutoptimization
hasthesamespeedasthespectralcodewitha Beowulfclusterof eightCPUs(aboutls pertimestep).
However,wedoexpecttheLBEcodewillscalelinearlywiththenumberofCPUs,butnotthespectralcode.

Ourcurrentresearchincludesparticulatesuspensionin fluidwithhighvolumefractionofparticles,vis-
coelasticandnon-Newtonianfluids,andforcedor free-decayhomogeneousisotropicturbulenceinaperiodic
cubebyusingthelatticeBoltzmannmethodonmassivelyparallelcomputers.
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